Pages

5 juillet 2010

Le clip du jour : I will derive

Toute personne qui se souvient de ce qui s'est passé le 12 juillet 1998 connaît également la chanson de Gloria Gaynor "I will survive" :

Des gars un peu fêlés ont parodié cette chanson, et cela donne "I will derive" (je vais dériver). Pour nos jeunes lecteurs du Var et d'ailleurs, je précise que la dérivation est un outil mathématique qui facilite l'étude des variations des fonctions.
Voici donc la vidéo, ainsi que la transcription des paroles (approximative) :



First I was afraid
I was petrified
Kept on thinking "I can't do this"
With x on each side
But I spent oh so many nights
Studying algebraic method
Learning the crud
I learned transfinite ord'nals
and so I'm back
from the college
I'm ready to solve you,
armed with infinite knowledge
Angular velocity
Mood full of animosity
And I know how to solve for a
Variant of three

So here I go, I'll subtract first
And here I go now,
After PEMDAS comes the worst
This was the problem that was too complex for me
But I can see
I hope the answer isn't phi
O, see I
I will derive
As long as I know algebra
I know math skills will thrive
I've got all the time I need
For this mathematic deed
and I'll derive
I will derive

It took all the smarts I had
Not to screw up bad
Solving for x proved to be
Tough and it made me sad
And I spent oh so many days
tryin to figure out that "x"
I used to whine
But now my knowledge makes me shine
And I see it
Some integer
But it's chained up in equations
Its value is a blur
But I will solve you on the spot
Using the knowledge that I gained
I will unleash math'mat'cal torrent
On the value that's retained

So here I go, I'll subtract first
And here I go now,
After PEMDAS comes the worst
This was the problem that was too complex for me
But I can see
I hope the answer isn't phi
O, see I
I will derive
As long as I know algebra
I know math skills will thrive
I've got all the time I need
For this mathematic deed
and I'll derive
I will derive

7 commentaires:

  1. Merci pour cette vidéo, Sonia, très amusante. J'ai trouvé des paroles qui corresponde mieux à la vidéo :

    At first I was afraid, what could the answer be?
    It said given this position find velocity.
    So I tried to work it out but I knew that I was wrong.
    I struggled; I cried, “The problem shouldn’t take this long!”
    I tried to think, control my nerve …
    It’s evident that speed’s tangential to that time–position curve.
    This problem would be mine
    If I just knew that tangent line
    But what to do? Show me a sign!

    So I thought back: do calculus,
    Way back to Newton and to Leibniz
    And to problems just like this.
    And just like that when I had given up all hope
    I said nope.
    There’s just one way to find that slope –
    And so now I, I will derive!
    Find the derivative of x’s position with respect to time.
    It’s as easy as can be
    Just have to take dx/dt
    I will derive, I will derive, hey hey!

    And then I went ahead to the second part
    But as I looked at it I wasn’t quite sure how to start:
    It was asking for the time at which velocity was at a maximum.
    And I was thinking, “Woe is me!”
    But then I thought, “This much I know:
    I gotta find acceleration, set it equal to zero.
    Now if only knew what the function was for it …
    I guess I’m gonna have to solve for it some way.”

    So I thought back: do calculus,
    Way back to Newton and to Leibniz
    And to problems just like this.
    And just like that when I had given up all hope
    I said nope.
    There’s just one way to find that slope –
    And so now I, I will derive!
    Find the derivative of velocity with respect to time.
    It’s as easy as can be
    Just have to take dv/dt
    I will derive, I will derive …

    So I thought back: do calculus,
    Way back to Newton and to Leibniz
    And to problems just like this.
    And just like that when I had given up all hope
    I said nope.
    There’s just one way to find that slope
    And so now I, I will derive!
    Find the derivative of x’s position with respect to time.
    It’s as easy as can be
    Just have to take dx/dt
    I will derive, I will derive, I will derive!

    Pour la version karaoké, c'est à cette adresse :
    http://www.youtube.com/watch?v=6DyIIq4CK-8

    Je pense que c'est le futur tube de l'été ... dans les départements maths des universités, voilà la succession de "the pi song" !!!

    RépondreSupprimer
  2. @ RubisCO :
    Merci pour ces précisions et pour le lien.

    RépondreSupprimer
  3. De rien, Sonia
    Je précise pour ceux qui sont pas très "physique" que la vélocité ("velocity" en anglais) n'est pas un projet de vélo hurbain mais un synonyme de vecteur vitesse. Ce mot est dérivé de l'anglais (si j'ose dire).

    RépondreSupprimer
  4. Dis donc, c'est le retour en force (en forme) de RubisCO ces jours-ci !
    :-)

    RépondreSupprimer
  5. Surtout sur la dérivation, c'est le chapitre qu'on a fait cette année.
    Si vous vous ennuyez, faites comme ces deux étudiants, dérivez (sauf si vous allez en haute mer).
    Allez, interro : dériver -3x^3+27x^2+8x+12 (c'est l'énoncé de la vidéo.
    Et le maximum est en (9+sqrt(89))/3.

    RépondreSupprimer
  6. Sympa de voir qu'il y a des matheux marrants ! ;-)

    RépondreSupprimer

Une question, un commentaire ?